Chromosomal transformation in Bacillus subtilis is a non-polar recombination reaction
نویسندگان
چکیده
Natural chromosomal transformation is one of the primary driving forces of bacterial evolution. This reaction involves the recombination of the internalized linear single-stranded (ss) DNA with the homologous resident duplex via RecA-mediated integration in concert with SsbA and DprA or RecO. We show that sequence divergence prevents Bacillus subtilis chromosomal transformation in a log-linear fashion, but it exerts a minor effect when the divergence is localized at a discrete end. In the nucleotide bound form, RecA shows no apparent preference to initiate recombination at the 3'- or 5'-complementary end of the linear duplex with circular ssDNA, but nucleotide hydrolysis is required when heterology is present at both ends. RecA·dATP initiates pairing of the linear 5' and 3' complementary ends, but only initiation at the 5'-end remains stably paired in the absence of SsbA. Our results suggest that during gene transfer RecA·ATP, in concert with SsbA and DprA or RecO, shows a moderate preference for the 3'-end of the duplex. We show that RecA-mediated recombination initiated at the 3'- or 5'-complementary end might have significant implication on the ecological diversification of bacterial species with natural transformation.
منابع مشابه
Evidence for Different Pathways during Horizontal Gene Transfer in Competent Bacillus subtilis Cells
Cytological and genetic evidence suggests that the Bacillus subtilis DNA uptake machinery localizes at a single cell pole and takes up single-stranded (ss) DNA. The integration of homologous donor DNA into the recipient chromosome requires RecA, while plasmid establishment, which is independent of RecA, requires at least RecO and RecU. RecA and RecN colocalize at the polar DNA uptake machinery,...
متن کاملCloning of the Bacillus subtilis recE+ gene and functional expression of recE+ in B. subtilis.
By use of the Bacillus subtilis bacteriophage cloning vehicle phi 105J23, B. subtilis chromosomal MboI fragments have been cloned that alleviate the pleiotropic effects of the recE4 mutation. The recombinant bacteriophages phi 105Rec phi 1 (3.85-kilobase insert) and phi 105Rec phi 4 (3.3-kilobase insert) both conferred on the recE4 strain YB1015 resistance to ethylmethane sulfonate, methylmetha...
متن کاملIntracellular Protein and DNA Dynamics in Competent Bacillus subtilis Cells
We have found that two DNA repair/recombination proteins localize differentially to the cell poles in competent Bacillus subtilis cells. RecA protein colocalized with competence protein ComGA, and its polar localization largely depended on ComGA and ComK activity, while RecN oscillated between the poles in a minute time frame, independent of any competence factor. Oscillation of RecN arrested u...
متن کاملGenetic recombination in Bacillus subtilis 168: effects of recU and recS mutations on DNA repair and homologous recombination.
Bacillus subtilis recombination-deficient mutants were constructed by inserting a selectable marker (cat gene) into the yppB and ypbC coding regions. The yppB:cat and ypbC:cat null alleles rendered cells sensitive to DNA-damaging agents, impaired plasmid transformation (25- and 100-fold), and moderately affected chromosomal transformation when present in an otherwise Rec+ B. subtilis strain. Th...
متن کاملEngineered biosynthesis of the peptide antibiotic bacitracin in the surrogate host Bacillus subtilis.
Nonribosomal peptides are processed on multifunctional enzymes called nonribosomal peptide synthetases (NRPSs), whose modular multidomain arrangement allowed the rational design of new peptide products. However, the lack of natural competence and efficient transformation methods for most of nonribosomal peptide producer strains prevented the in vivo manipulation of these biosynthetic gene clust...
متن کامل